

Conference

Status and prospects of nuclear energy in Europe Managing nuclear risks in energy transition scenarios

Yves Marignac

Nuclear energy in Europe and civil society

European Parliament and online, 17 October 2024 Hosted by Dario Tamburrano, MEP - The Left Strategic advisor Project manager Fissile & Fossil Energies

Current status

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #2 / 12

Perceived dynamics

Main evolutions:

- Fast growth of renewables, slow decrease of nuclear power output
- Ageing of the fleet: **38,4 years of operation** on average for reactors operating in EU-27
- Considerable delays and additionnal costs for nuclear projects

Ex. Flamanville-3: €12bn additional, 12 years delay

Main positions:

- Binding EU objective of 42.5% renewables in energy consumption by 2030
- European nuclear alliance, led by France: 11 nuclear Member States + 4 non nuclear (BE, BG, FI, FR, HU, NL, CS, RO, SK, SL, SV + HR, ET, IT, PL)
 Objective: x 1.5 EU nuclear capacity by 2050
- European Industrial Alliance on Small Modular Reactors (SMRs) set by the European Commission
- 12 Member States non committed or opposed

Net-zero strategies

Source : Association négaWatt, based on IPCC (2018), 1.5°C Special Report

Main lessons from IPCC:

- Demand-side is an important factor
- Electrification through low-carbon power is key for energy supply
- Massive growth of renewables is central, additional nuclear power is an option
- Growing evidence of the technical feasibility and economic relevance of high penetration of renewables, though non fully conclusive yet

Share of nuclear power in electric generation (2023)			
World	9.2%		
EU-27	22.6%		

As the most nuclearized region in the world, EU-27 has specific questions to deal with on the role of nuclear in net-zero strategies

Past trend and projected scenarios

Source: Institut négaWatt; past data: based on World Nuclear Industry Status Report (2024), with IAEA-PRIS (2024);

projections based on data and estimates from EDF (2024), Eurelectric (2024), Entso-e & Entso-g (2024), European Commission (2024), negaWatt (2023), CAN-Europe (2024).

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #5 / 12

Contrasted visions re. nuclear needs

					G			
			Steady revival		Timed decline		Natural extinction	
		2023	2040	2050	2040	2050	2040	2050
	Nuclear capacity (GWe)	97	120-130	140-150	70-80	50-70	25-30	0
	Nuclear output (TWh)	619	700-750	780-800	250-500	250-500	135-145	0
	Electric demand (TWh)	2,700	5,000-6,000	6,000-7,000	4,600-5,200	6,000-7,000	4,200-4,700	4,500-5,000
	Nuclear - Wind+PV shares	23% - 26,6%	20% - 60%	15% - 80%	10% - 70%	10% - 90%	5% - 95%	~0% - ~100%
	Exan		EDF scenario		EC scenario – S3		CLEVER scenario	
Electric narrative Nuclear narrative		High electrification, nuclear power used as dispatchable, load following source		Strong electrification, nuclear power rather used as baseload, with a limited share		Electrification combined with efficiency and sufficiency, shifting to 100% renewables		
		Existing nuclear capacity extended up to 60 years, but only accounts for 15% of capacity needed in 2050		Life extention of existing capacity and the development of new reactors follow current stated policies		Nuclear capacity is shut down along progress with demand-side and renewables, up to 2050		
De or	Depending Life on the strategy, rea different pressures are exerted N on nuclear issues at different timescales	e extension of eactors (PLEX)	Life extension to 60 years of most of the existing fleet, 80 years for a large share of it		Life extension of existing reactors to 50 years is foreseen, and to 60 years for some of them		No life extension beyond 50 years is needed	
i i i i		New reactors	Between 60 GW of new capacity ne on post 60 years units and nur	/e and 130 GWe eeded (depending PLEX), both large merous SMRs	About 50 new larg by 2050 to replac A moderate nu are introduced,	e units are needed ce closed reactors umber of SMRs starting in 2030	No new reacto are no	ors of any type eeded

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #6 / 12

Nuclear risk management

Nuclear trajectories arising from contrasted scenarios come with different challenges and requirements
 Nuclear objectives and capacities, and their adequacy need to be questioned from a risk management perspective

1. Life extension

Programme of life extension (PLEX): a mix of nuclear safety, electric security, and cost and implementation concerns

- Massive ageing (unbalanced age pyramid)
- Uncertainty regarding the feasibility
 Oldest operating reactor: Beznau-1 (Switzerland) 55 years

No experience yet in PLEX to 60 years PLEX to 80 years: unknown safety territory

• Higher **dependency on PLEX** in the electric system

higher risk of failure - safety issues, risk of generic problem e.g. stress corrosion cracks in French reactors

- higher pressure on industrial and financial capacity
- higher risk of situations of arbitration between nuclear safety and electric security
- PLEX implies adjusting to growing penetration of renewables
 - higher need for load following
 - increases safety concerns
 - puts further pressure on costs and competitiveness

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #8 / 12

2. New reactors

The building of new reactors raises issues about safety objectives, delays, costs and quality of construction

- Limited new reactors can be provided by EDF (EPR, EPR2, EPR1200), if not by European suppliers, raising sovereignty concerns
- Higher **dependency on new large units** in the electric system, with electric security, cost and competitiveness concerns
 - higher risk of failure of big projects
 - higher pressure on safety objectives, risk of regression e.g. discussion on "simplified" EPR2 design compared to EPR
 - higher pressure on quality of construction
- Introduction of small modular reactors (SMR) is open to question
 - not ready for deployment, still highly uncertain
 failure of "big" SMR projects (Nuscale, US; Nuward, France)
 - no proof of concept yet regarding micro/advanced SMR
 - a new kind of nuclear power, disseminated, with big issues about new ways of regulating safety, security, transport, etc.
- Too many projects would stretch **industrial and financial capacities**, while the absence of new units challenges their future

	B			
Steady revival	Timed decline	Natural extinction		
Need for new units significantly over domestic capacity	Need in excess of domestic building capacities	No new reactors are needed		
Highly exposed to the risk of new building programmes of large units not delivering in time and budget	Important need for new large units, although adjustable to some extent	No need for new reactors, avoiding the associated risks		
The evolving role of nuclear power in the energy system calls for SMRs, adding uncertainty and risks	SMRs might be part of the strategy, bringing added uncertainty, but are not strongly needed	No SMRs (although safe and sustainable ones, if they exist one day, could be accomodated by the system)		
New projects likely to strongly stretch skills and capacity	Industrial and financial capacity likely to limit plans	Need to maintain capacities without new projects		

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #9 / 12

3. Fuel and waste management

As nuclear power comes with nuclear fuel and produces radioactive waste, new projects come with new manufacturing, storage and disposal needs

- Nuclear fuel is mostly based on uranium, that is essentially imported, including from places under Russian influence
- Continued fuel supply needs maintained conversion, enrichment and fuel fabrication capacities
 - for PLEX and new large units of similar types, need to build new fuel capacities to cover their lifetime
 - for advanced type of reactors and SMRs, existing fuels, facilities, transport options need to be designed first...
- Increased use of nuclear fuel, in capacity and over time, calls for adjusted storage and disposal capacities
 - extended and/or additional storage capacities might be needed, on site or centralised, to cope with piling-up spent fuel and waste, and possibly adjust to new categories
 - disposal facilities, when they are planned/are developed, are neither dimensionned to cope with arising quantities nor designed for new, exotic spent fuel and waste

	B	С	
Steady revival	Timed decline	Natural extinction	
Much increased dependency on uranium-related imports	Maintained dependency on uranium-related imports	Reduced and ultimately cut-off dependency	
High pressure and risk of failure due to the need of increased fuel- related capacities, including undesigned ones for SMRs	Need for renewal of fuel-related capacities, with uncertainties on delays and costs; additional uncertainty if SMRs are included	No need for new fuel enrichment of fabrication capacity; caution about the need to properly coordinate closures	
Increasing need for storage capacity, with risks over implementation and delays, high pressure on disposal plans	Progressive need for storage capacities to be deployed, foreseen overshoot of current estimates of quantities in disposal plans	Visibility regarding the final inventory, no need for additional storage or disposal capacity compared to what's already considered	

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #10 / 12

4. Evolving concerns

The evolution of the electric system, as well as broader and longer-range environmental or geopolitical changes bring new challenges

- Nuclear reactors and plants being built by 2050 as part of net-zero strategies will be introduced in a changing electric system, possibly bringing new stress situations
- Once started, nuclear reactors and plants could run until ~2100, and their waste be dealt with until ~2200
- Towards 2050 and beyond, the growing and uncertain impacts of climate change must be considered
 - limitation to operation (heat waves, drought...)
 - increased risks (flooding, tornadoes...)
 - Iimitation regarding inland siting compared to coastal, both for PLEX and for new units
- Geopolitical instability, security issues and the vulnerability of nuclear facilities must be considered, in the short to long terms
 - large existing units were not conceived re. modern threats
 - small, scattered units are more difficult to protect

A Steady revival		B Timed decline	C Natural extinction	
Ne ne	eed to cope with ew stress by the electric system multiplied	PLEX and new reactors need to adapt to the evolution of stress	Limited need to adapt existing reactors	
H to rel d n	igher exposure climate change ated limitations, lue to the large number of PLEX and new built projects	New projects and PLEX programme might be conditioned by climate change constraints, e.g. regarding siting	No new reactors nor plants means reduced adaptation challenges;climate related issues can be considered to prioritise reactors' closures	
H ris sec la st dis	igh exposure to ks associated to curity, both with arge units and a rong number of seminated SMRs	Significant and lasting exposure due to the lifetime of vulnerable equipment	Reduced exposure to security issues and related geopolitical concerns over time	

Nuclear Energy in Europe • European Parliament & online, 17 October 2024 • #11 / 12

Thank you for your attention!

More information:

Yves Marignac Strategic Advisor, Project Manager on fissile and fossil energies - Institut négaWatt

E-mail : y.marignac@institut-negawatt.com Tel. : +33 6 07 71 02 41 Twitter : @YvesMarignac LinkedIn : www.linkedin.com/in/yvesmarignac/